Advancing process-based hydrologic models for

climate risk assessments

Martyn Clark, Grey Nearing, Ethan Gutmann, Naoki Mizukami, Pablo Mendoza, and Andy Wood
(NCAR)

Bart Nijssen and Michael Ou
(UW)

Sujay Kumar and Christa Peters-Lidard
(GSFC)

NASA Earth Science Technology Forum Support from
Annapolis, Maryland, 16 June 2016 NASA-AIST



Outline

e
4 . . )
« Motivation
= Water security
= Need to explore wide range of futures in water resources planning y

“Revealing” uncertainties in climate impact assessments
» Emission scenarios

= Climate model simulations (model, initial conditions)

= Climate downscaling (statistical, dynamical)

= Hydrologic modeling

Model development activities
s Climate downscaling
= Hydrologic modeling

Summary and outlook



Declining snowpack: |
end-of-winter snow accumulation UCAR

a. Observations b. VIC 1950-1997

Mote et al., BAMS, 2005



Changes in seasonality: NCAR
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...controversial questions

When will Lake Mead go dry?

Tim P. Barnett' and David W. Pierce’

Comment on “When will Lake Mead go dry?”
by T. P. Barnett and D. W. Pierce

Joseph J. Barsugli,* Kenneth Nowak,'? Balaji Rajagopalan,'*> James R. Prairie,*

Water supply risk on the Colorado River:
Can management mitigate?
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[1] Population growth and a changing climate will tax the future reliability of the Colorado
River water supply. Using a heuristic model, we assess the annual risk to the Colorado River
water supply for 2008-2057. Projected demand growth superimposed upon historical
climate variability results in only a small probability of annual reservoir depletion through
2057. In contrast, a scenario of 20% reduction in the annual Colorado River flow due to
climate change by 2057 results in a near tenfold increase in the probability of annual
reservoir depletion by 2057. However, our analysis suggests that flexibility in current
management practices could mitigate some of the increased risk due to climate change—
induced reductions in flows.
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on the Colorado River: Can management mitigate?, Water Resour. Res., 45, W08201, doi:10.1029/2008WR007652.
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“Revealing” uncertainties
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Climate model uncertainty

The role of internal variability
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Downscaling climate models

- High-resolution Regional
Climate Model




WRF simulations

- Water vapor simulation
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NCAR

Statistical Downscaling UCAR
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Statistical downscaling: Wet day fraction
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Statistical downscaling methods and hydrologic models

Impact on Annual water balance



Key Findings

 The choice of GCM and ensemble members matters

» The choice of meteorological forcings used in defining current
hydroclimate can have as large an impact on projected hydrologic
outcomes as the climate change signal.

» The choice of statistical versus dynamical downscaling is important, and
the resolution used in dynamical downscaling matters.

» The choice of statistical downscaling technique, if any, matters

» The choice of hydrologic model also affects projection outcomes, though
less so if a hydrology model is well calibrated.

» Finally, outcomes depend significantly on subjective decisions made in
calibrating hydrologic models
 the choice of forcing data
 the choice of calibration scheme and objective
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Climate downscaling advances

Dichotomous end-members:
« Statistical downscaling is computationally efficient (no physics)
« Dynamical downscaling has loads of physics (too expensive)

Identify the key physics and develop a simple model
GOAL: >90% of the information for <1% of the cost

Intermediate Complexity Atmospheric Research model (ICAR)
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ICAR Precipitation Simulation

WRF and ICAR have very
similar precipitation Annual

distributions. WRF Precip. (mm) ICAR
’ 1800
ICAR requires ~1% of the
computational effort of
WRF.
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| 900
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Unifying process-based hydrologic models

CLoues &
VEATER VAFOR

(LATENT

vl
A
A R

v

BOUNDAKY LATER
(AND FXOANGE
WITH FRIT ATMOSPMEIRT)

.

o > ] >-A‘ . |
~ - 3 T
'4“,’%\ — ———
. N

FIVIR DISOMARGE

-

T

General schematic of the terrestrial water cycle,
showing dominant fluxes of water and energy

CVAPORATION -"

CONDINSATION
HEATING

OF ATMOSFIISD)
-

‘ * I n »
“ ~ - M

-

NCAR
UCAR

Conceptual basis:

1. Most modelers share a common understanding of
how the dominant fluxes of water and energy affect

the time evolution of model states

2. Differences among models relate to
a) the spatial discretization of the model domain;
b) the approaches used to parameterize individual
fluxes (including model parameter values); and
c) the methods used to solve the governing model

equations.

The Structure for Unifying Multiple Modeling Alternatives (SUMMA):

Defines a single set of conservation equations for land biogeophysics, with the
capability to use different spatial discretizations, different flux parameterizations and

model parameters, & different time stepping schemes
Clark et al. (WRR 2011); Clark et al. (WRR 2015a; 2015b)



Need to unify hydrologic models

S

- Model proliferation: Every hydrologist has
their own model, making different decisions at
different points in the model development
process

« The shantytown syndrome: Ad-hoc
approach to model development

« Model proliferation & the shantytown syndrome
make it difficult to test underlying hypotheses
and identify a clear path to model improvement



The Structure for Unifying Multiple Modeling Alternatives o
(SUMMA) UCAR
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Model construction

NCAR
UCAR

Numerical solution

= Traditional approach in land modeling: Operator splitting

s SUMMA: Fully coupled implicit solution

— -,

- ~

- T
- —
7 ' \

! Show
/

/’ ) temperature
/,, Canopy \
/ temperature, [
I -~
Canopy (7 Solver
\ \ _storage Z \-
Snow \
\ N ‘\ Storage 7
N

~

~~—_—

\
~

N

-———

Soil

~
\

temperature

—— -

- =

e
Aquifer

N

-

-

storage

——’

Sonl water \
/
N \content _

7’
-

S
\

/

7\

/

\
I
/

O Water
O Energy

("~ , Conservation equations




Model construction
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« Modularity
s Modularity at the level of individual fluxes
= Separation of physical processes and the numerical
solution greatly simplifies adding new modeling options




Process flexibility
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Spatial flexibility
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Modeling requirements

- Scientific requirements
= Process flexibility
= Spatial flexibility
= Numerical flexibility

 User requirements
= Can be configured to meet a broad range of requirements

= Can be configured to minimize run time, and enable use of
ensembles and extensive model analysis

= Easy to modify

= Existing multiple hypothesis frameworks meet these
requirements to varying degrees
= JULES, CLM, Noah-MP, etc.



Land Information System (LIS)

@ A system to study land surface —
processes and land-atmosphere g

interactions o Lo

Q Integrates satellite- and ground-
based observational data products |,
with land surface modeling I :
techniques o S - T,

Q Capable of modeling at different
spatial scales

NS~ RIVER DISCHARGE

v NASA's 2005 software of the year award

v An OSSE environment for hydrology mission studies has been developed as
part of an ALST-2011 project

http://lis.gsfc.nasa.gov



LIS modes of operation UCAR

e
Uncoupled or LIS - OPT/UE
Analysis Mode Coupled or
Optimization and Uncertainty Estimation
(LM, GA, RW-MCMC, DEMC) ' @ Forecast Mode
LIS - DA Weather

Data Assimilation (DI, EnKF)

Observations (Soil
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Snow, Skin P

Temperature)

___________

Land Surface Models (Noah,
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Parameters

(Topography, Soil
properties, vegetation
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___________

Water and Energy
Fluxes, Soil Moisture and
Temperature profiles,

Land surface states
"""""" 1 Hydrologic

! |
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! i i E Forecasts
! |

! |
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Kumar et al. (R006), Env. Modeling and Software, Peters-Lidard et al (R007), Innovations in Systems and Software Engineering



Outline

- Motivation
= Water security
= Need to explore wide range of futures in water resources planning

- “Revealing” uncertainties in climate impact assessments
= Emission scenarios
= Climate model simulations (model, initial conditions)
= Climate downscaling (statistical, dynamical)
= Hydrologic modeling

- Model development activities
= Climate downscaling
= Hydrologic modeling

[ « Summary and outlook ]




Summary and outlook

» Uncertainties in climate impacts “revealed”
= Uncertainties have always been there; just understanding them now
= Possible that previous climate impact studies were over-confident

- Work ongoing to improve representation of uncertainties

= Climate downscaling

- Computationally efficient and physically realistic

- Apply to a wide range of scenarios; better depiction of nonstationarity
= Hydrologic modeling

* More thoroughly explore hydrologic modeling alternatives

- Improve model fidelity; depart from model democracy

« Outlook
= Explore the “full” space of likely futures

= Develop “hydrologic storylines” — a representative set of scenarios
useful for water resources planning



Explicitly characterize uncertainty through the
hydrologic prediction chain
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Explicitly characterize uncertainty through the NCAR
‘hydrologic prediction chain

- Approach
» Characterize uncertainty: “full”
coverage of model hypothesis
space

Beer’s Law

2-stream broadband O Hydrology

2-stream vis+nir O Thermodynamics

(:) Conservation equations
O Physical processes

0« Model options

> Reduce uncertainty: cull bad
models and methods

« Move from “ad-hoc” small
ensemble systems, to ensemble
systems deliberately designed
to encapsulate defensible
modeling approaches P I

Explicit overland flow
Water table (TOPMODEL)
Xinanjiang (VIC)

Soil Stress function

Clark et al., WRR 2015; Clark et al., Current Climate Change Reports 2016
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